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Abstract: 

Empirical studies in the product development literature have shown that the users’ self-reported importance of product 
attributes differs from the derived importance of product attributes obtained through the attributes’ correlation with an 
external criterion such as user satisfaction. However, no study has examined this phenomenon in the context of 
software products. This investigation is important because the present-day software requirement-prioritization 
techniques are based on capturing users’ self-reported importance of new software product features. As such, I 
develop a method in the study to capture the derived user importance of new features. The findings show that the 
implicitly derived importance of software attributes differs from the importance rankings assigned to them using 
requirement prioritization techniques. Further, I found that the implicitly derived user importance to identify the 
determinants of user satisfaction more accurately than the prioritization techniques based on self-stated user 
importance. I discuss the implications of this promising new approach for practice and future research in requirements 
prioritization. 
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1 Introduction 
Gaining satisfied users begins with effectively capturing, analyzing, and understanding their genuine 
requirements. However, we face the question about whether we take user responses at face value. Vavra 
(1997) has observed that the relative importance of product attributes differs depending on whether they 
are explicitly stated (defined as users’ self-reported importance) or implicitly derived (defined as 
statistically obtained by correlating attributes with an external criterion such as user satisfaction). 
Researchers have empirically tested this observation in the non-software product domain.  

However, there is a gap in the literature: studies have examined the explicit-implicit phenomenon only for 
existing product attributes. No study has examined this phenomenon’s applicability to new product 
attributes or new features that users requested, and no study has proposed theory to explain the 
phenomenon. Also, so far, studies have compared the implicit user importance with only one explicit 
method, the constant sum scale. For greater validity, we need to compare the implicit user importance with 
results obtained from other explicit methods (Matzler & Sauerwein, 2002).  

Further, all the aforementioned investigated investigations have focused on non-software products. An 
investigation of this phenomenon is particularly important in the software context because it will help 
assess the efficacy of existing prioritization techniques in capturing software requirements that reflect 
“true” user needs. A review of the literature shows that, currently, all prioritization techniques capture only 
the users’ self-stated importance. Yet, no study has investigated the “explicit-implicit” phenomenon in the 
context of software products for either new or for existing attributes.  

Keeping this context in view, I investigate the phenomenon of users’ explicit-implicit importance through an 
experimental study with actual users of a software product. I pose two research questions: 

RQ1: Are users’ self-reported importance of new features and implicitly derived importance of new 
product features similar? 

RQ2: If not, how do we determine the “true” user importance of new software product features? 

To answer these questions, I begin by developing a theory of the phenomenon based on concepts 
gleaned from a multi-disciplinary review of the literature. The theory builds on the widely accepted premise 
across disciplines that any new product feature provides value to the user along two dimensions: utilitarian 
and hedonic. I use the theory to hypothesize the expected outcomes. I then conduct an experiment with 
actual users of a software product. For this experiment, I developed a method to determine users’ derived 
importance of new software product features. In the experiment, I compared the results of feature choices 
obtained from capturing users’ explicit preferences using three widely used requirement engineering 
techniques with the results obtained from capturing users’ derived preferences and the impact of the 
choices on user satisfaction. I discuss the findings and their implications for practice and future research. 

2 Theory Development 
The conceptualization of hedonic and utilitarian product values (HV and UV) as distinct and independent 
constructs first emerged in the consumer research literature (Holbrook & Hirschman, 1982; also see 
Diefenbach, Kolb, & Hassenzahl, 2014). Scholars later introduced the equivalent constructs of hedonic 
and pragmatic quality into the human-computer interaction (HCI) literature (Hassenzhal, Platz, Burmester, 
& Lehner, 2000) and intrinsic (perceived usefulness) and extrinsic motivators (perceived enjoyment) into 
the technology acceptance model (TAM) literature (Davis, 1989; Venkatesh, 1999).  

Scholars generally agree that a product’s utilitarian and hedonic dimensions are distinct and together 
capture its essential facets (Batra & Ahtola, 1990; Block, 1995; Dhar & Wertenbroch, 1999; Mano & Oliver, 
1993; Schmitt & Simonson, 1997; Strahilevitz & Myers, 1998; Veryzer, 1995). While the product attributes 
that provide UV are functional and goal oriented and generate cognitive response from the user, the 
product attributes that provide HV represent novelty, aesthetics, unexpectedness, pleasure and fun and 
evoke affective user responses (Strahilevitz & Myers, 1998).  

HV derived from using a product provides intrinsic motivation to users. Intrinsically motivated users 
experience pleasure and enjoyment regardless of the external benefits that the UV provides them such as 
improvement in productivity, compensation, and career progression (Cocosila, Archer, & Yuan, 2007; 
Venkatesh & Speier, 1999; Deng, Doll, & Troung, 2004; Li & Hsieh, 2007; Saade, 2007). However, HV is 
still important for users of utilitarian products and organizations that deploy them. Research has found that 
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intrinsic motivators lead to users’ greater commitment to using a system (Li & Hsieh, 2007; Venkatesh, 
Speier, & Morris, 2002; Saade, 2007), which may lead to better performance (Li & Hsieh, 2007). 
Intrinsically motivated users experience a sense of flow, which refers to feelings of playfulness, enjoyment, 
and cognitive absorption (Ha, Yoon, & Choi, 2007; Hsu & Lu, 2004; Liu, Liao, & Pratt, 2009; Gerow, 
Ayyagari, Thatcher, & Roth, 2013). While users consider the extrinsically motivating UV a means to an 
end, they consider the intrinsically rewarding HV as an end in itself (Ha et al., 2007). 

However, past research shows that, when users have to choose between a hedonic and a utilitarian 
alternative, they show their preference for the utilitarian (Diefenbach & Hassenzahl, 2011). Research has 
termed the reason underlying this phenomenon as “lay rationalism” (Lindgaard, Fernandes, Dudek, & 
Brown, 2006). People wish to make a rational choice. However, hedonic features are hard to justify 
rationally compared with utilitarian features (Diefenbach & Hassenzahl, 2009). Research has associated 
further hedonic attributes with waste, luxury, and guilt (Kivetz & Simonson, 2002; Hsee, Zhang, & Xi, 
2003). Users wish to be seen as addressing points of pain before addressing their pleasure needs to avoid 
guilt (Berry, 1994) even though they may prefer the latter (Diefenbach & Hassenzahl, 2011). Thus, the 
“explicit” importance of user requirements obtained through self-reports may reflect “socially acceptable” 
or “politically correct’’ responses (Oliver, 1997). As such, they will not likely match the “derived” response 
when one mitigates the effects of the aforementioned causes that distort users from expressing their “true” 
choice. As such, I hypothesize that: 

Hypothesis 1: The explicit importance that users’ assign to a new product feature differs from its 
implicit importance to the user. 

Traditionally, the techniques used for software feature selection have relied on the explicit methods such 
as users’ (and sometimes other stakeholders such as development team members’) self-reports. Table 1 
summarizes and briefly describes the commonly cited feature selection methods from the requirement 
engineering literature (adapted from Berander & Andrews, 2006). Therefore, all these methods are subject 
to the aforementioned biases associated with explicit methods. To resolve this predicament, one can work 
backwards by first obtaining users’ overall satisfaction with the proposed implementation of a subset of 
requirements that the users choose and then using an appropriate statistical technique to derive the 
implicit importance of the individual requirements to the users. To accomplish this goal, I adapt the widely 
accepted (Brandt, 1987; Anderson & Mittal, 2000; Brandt, 1988; Mittal, Ross, & Baldasare, 1998) penalty 
reward contrast analysis (PRCA) technique in the context of new feature selection 

Table 1. Methods of Feature Selection from Requirements Engineering Literature (Adapted from Berander & 
Andrews, 2006) 

Technique Description 
Priority groups 

(Wiegers, 1999) 
In this grouping technique, users group software requirements into user priority 
categories, such as low (nice to have), medium (regular), and high (critical).  

Planning game 
(Beck, 2001) 

In this technique, the development team (which includes a user representative) 
sorts the requirements by effort, risk, and value. Based on the relative 
assessments, the scope of the next release is set.  

100 points 
(Leffingwell & Widrig, 2003) 

In this ranking technique, each stakeholder allocates gives each requirement up to 
a total of 100 points. One then ranks the requirements by sorting them based on 
the total points allocated by all the stakeholders. 

Theory W 
(Boehm & Ross, 1989) 

In this technique, each stakeholder notes which requirements they would be 
willing to remove and which are most important. Through negotiation among 
themselves, the stakeholders then determine the prioritized list.  

AHP 
(Saaty, 1980) 

This technique addresses situations involving multi-criteria decision making by 
comprehensively comparing the cost and value of each requirement pair to 
determine the priority list.  

B-tree prioritize 
(Heger, 2004) 

This technique uses an algorithm to economize on the number of pair wise 
comparison of requirements in a given set of candidate requirements for 
determining a prioritized list.  

Value-oriented prioritization 
(Azar, Smith, & Cordes, 2007) 

In this method, the company executives first identify the core business values and 
then rank these values on a relative scale. The executives than generate a ranked 
list of requirements by assigning each requirement a weight in each value 
category.  
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By having two sets of dummy variables representing each feature request with a value of (1, 0) indicating 
the user preference for its implementation and a value of (0, 1) indicating the user choice for its non-
implementation, multiple regression analysis is conducted with the overall user satisfaction with the feature 
subset as the dependent variable. Using this statistical approach, we get two regression coefficients for 
each feature, one representing the user satisfaction with implementation of a feature and the other 
regression coefficient representing the user (dis)satisfaction with non-implementation of the same feature.  
The sum of the absolute values of the significant regression coefficients for implementation and non-
implementation of a feature represents the assessment of users’ implicit importance of a feature by 
providing a measure of the range of impacts of a feature on overall user satisfaction (Mikulic & Prebez, 
2008).  

Capturing users’ overall satisfaction for a feature set and then deriving the importance of individual 
features in terms of their impact on user satisfaction helps obfuscate the user need for providing a socially 
acceptable response. Further, this method mitigates the guilt feelings of indulging in luxury (or waste) 
associated with users’ self-reporting their explicit preference of specific individual features. Thus, the 
statistically derived implicit importance of individual features is more likely to accurately reflect user’ true 
needs. As such, I hypothesize that: 

Hypothesis 2: Users’ satisfaction with implementing an implicitly derived feature set is higher than 
users’ satisfaction with implementing the feature set selected using explicit 
methods. 

3 Method 
I used an experimental method in the study. Experimental studies are useful in systematically identifying 
the differential impacts of treatments (features selected using various feature selection techniques) on 
outcome variables (user satisfaction). 

Table 2. Sample User Feature Requests Used in the Study 

Feature description 

1 Choose from a calendar  
Allow dates to be chosen from a calendar 

2 Shortcut to create tasks  
Enable users to create a shortcut to go directly into the task creation mode.  

3 Make Quiet Hours completely quiet  
Have a new option—“super quiet hours”—during which all reminders should be disabled 

4 Purging completed tasks  
Provide a feature to purge all completed tasks.  

5 Color tasks based on priority  
Enable users to visually see task priority through a color coding scheme 

6 Due Date only  
The application should allow the user to bypass the due time  

7 
Creating tasks that repeat yearly  
Allow creation of yearly recurring tasks to remind users about important events such as birthdays, and 
anniversaries 

8 Grocery shopping list 
Provide a feature to enable users to create and update a regular grocery list 

9 New task default priority  
All tasks should be set to medium priority by default. 

10 Geolocation reminders  
Provide a feature to remind users of that they are passing through an important geolocation 

3.1 Experimental Setting 
I chose Astrid Task Manager, a popular mobile application, as the software product to investigate for this 
study. At the time I conducted the study, Astrid had an active user forum where users could post and 
provide their comments on new feature requests. Actual users of Astrid Task Manager provided their 
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responses to a pen and paper-based survey in January, 2013. I used 10 randomly selected feature 
requests (see Table 2) made by users of Astrid Task Manager as the test instrument. 

3.1.1 Subjects 
I used a representative user group of young adults (ages 19-24) as subjects. Researchers recognize users 
in this age group as early adopters of the latest technologies and responsive to innovations (new features 
in my experimental context) (Ehrenberg, Juckes, White, & Walsh, 2008). One hundred and forty-eight 
subjects participated in the experiment from which I obtained 128 valid responses. The valid responses 
from 72 males (average age 21.6 years) outnumbered the valid responses from 56 females (average age 
21.7 years). All subjects actually used Astrid, and I recruited them from a state university. I took their 
consent for participating in the study.  

I trained the subjects on the methods of feature selection used in the experiment just before I conducted 
the study. I explained the 10 Astrid feature requests in the experiment by reading out each feature request 
aloud and seeking subject response on whether they required any clarification. The effect size found 
during the pilot study in October, 2012, with 38 users of Producteev, another task-planning software, 
helped determine the sample size. Looking up Cohen’s power primer (Cohen, 1992) for a medium-sized 
effect observed during the pilot and assuming a power of 0.8 and alpha = 0.05 (one tail) gave a sample 
size of 54 subjects. 

3.2 Selection of Methods 
I selected three methods of prioritizing requirements from the software requirements engineering literature 
for the experimental investigations in the study. In Sections 3.2.1 to 3.2.3, I describe the reasons for 
selecting these methods from among the methods listed in Table 1.  

3.2.1 Binary Search Tree 
Racheva, Daneva, and Buglione (2008), who classified requirements-prioritization techniques according to 
their scalability, found that the Binary search tree method scales up well up to medium-scale 
requirements. Bebensee, van de Weerd, and Brinkkemper (2010) have observed that, for market-driven 
software products, one can expect a larger number of new feature requests from users than software 
products developed for a single customer. Hence, techniques that work well for only small-scale 
requirements may not be suitable for software products for mass markets. In their comparative study, Ahl 
(2005) found that the Binary search tree performed better on many criteria including scalability and 
accuracy of results compared to the other four techniques of requirements prioritization (i.e., planning 
game, AHP, planning game combined with AHP (PGCAHP)) and the 100 points method).  

3.2.2 Priority Groups Method 
Industry professionals working in a market-driven product development environment prefer simple tools 
(Lehtola & Kauppinen, 2006; Berander & Andrews, 2006). However, many large-scale or even medium-
scale requirements prioritization techniques are based on relatively complex algorithms (Rachdeva, 
Daneva, & Buglione, 2008). This complexity may account for the popularity of the simple-to-use priority 
groups method (Wiegers, 1999). It is among the most traditional and best-known methods of requirements 
prioritization recommended by the IEEE (Sillitti & Succi, 2006) that classifies requirements into three 
priority groups: high, medium and low (Lehtola & Kauppinen, 2006).  

3.2.3 Constant Sum Scale or 100 points Method 
In their empirical study, Griffin and Hauser (1993, p. 17) considered three different measures of 
importance (direct rating, constant-sum scale, anchored scale) and found no significant differences 
between the methods. However, constant sum scales more sharply distinguishes importance weights. 
Because explicit-implicit studies have used this scale (e.g., Matzler and Sauerwein, 2002), I also 
measured explicitly derived importance using a constant-sum scale: the 100 points method. 

3.3 Experimental Treatments 
I describe the process that the subjects used in arriving at a prioritized feature subset from the set of 10 
Astrid user feature requests using each of the different prioritization techniques below. 
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Binary search tree method: subjects created a ranked list of user requirements by first creating a node 
with the first requirement in the requirement set and comparing the next requirement with this node. If the 
requirement is of lower priority it is placed on the left of the node else it is placed on the right of the node. 
This process continues with subsequent requirements in the requirement set until a ranked list of 
requirements is produced. The node at the extreme right is the requirement of highest priority to that 
subject and the node at the extreme left is the requirement of lowest priority.  

Priority groups method: the following definitions (Wiegers, 1999) were used by the subjects for 
categorizing requirements in the High, Medium and Low categories:  

High priority requirements are mission critical requirements; they are required for the next release. 

Medium priority requirements support necessary system operations; they are required eventually but could 
wait until a later release. 

Low priority requirements are a function or quality enhancement; they would be nice to have someday if 
resources permit. 

The relative priority ranking of requirements was determined by High > Medium > Low and within each 
category by the number of users who opted for the requirement to belong to that category. 

Constant sum scale or 100 points method: users were given 100 points to be distributed among the 
new feature requests based on their importance to the users. The higher the points assigned the greater is 
the importance of the feature to the user. All points assigned to the features should total to exactly 100. 
The percentage of the points assigned to the feature gives the measure of its importance. The relative 
ranking of the features is done by sorting them in the descending order of the percentage points assigned 
to them. 

Implicit method: users rated their overall satisfaction with the requirements prioritized by users using the 
above techniques. The importance of the requirements was determined based on the regression 
coefficients obtained by conducting the multiple regression analyses described in detail in the theory 
development section. 

3.4 Experimental Procedure and Measures Used 
I conducted the experiment in three rounds with a weekly gap between them. Temporal separation in data 
collection helps mitigate potential effects due to common method variance because the same subjects 
provided data on independent and dependent variables (Sharma, Yetton, & Crawford, 2009). Further, it 
provided the time required to analyze data for tailoring the questionnaire specifically to individual subjects 
in subsequent rounds.  

3.4.1 Round1 
In round 1, 148 subjects prioritized Astrid’s 10 feature requests by providing their responses to the 
questions, definitions, and procedures related to related to the binary search tree method, priority grouping 
method, and the 100 points method. The subjects categorized the requirements into two sets of 
requirements: one for implementation into the product and the other for non-implementation. The priority 
groups method provides both a subset of requirements that are important for users and which they want 
implemented in the software (high and medium categories) and a subset of requirements that they do not 
care about (low category). The other methods provide a list of requirements ranked in the order of their 
importance to the users but with no guidance on where the cut-off point lies for separating the features into 
the implementation set and the non-implementation set. As such, I used the priority groups method as a 
baseline. Using the priority groups method first, I identify “n” requirements (high + medium) that are 
important to the users. Based on this known value of “n”, I then identify the top ranked “n” requirements 
using the tree method and 100 points method for the purpose of classifying them in the implementation 
subset. Finally, I include the bottom “10-n” requirements using these three methods in the non-
implementation subset. 

3.4.2 Round 2 
Subjects in round 2 provided their satisfaction responses to the implementation and non-implementation 
feature subsets that I determined by analyzing subjects’ individual responses using the three explicit 
techniques in round 1. I define user satisfaction as an affective user response to the degree to which the 



www.manaraa.com

Transactions on Human-Computer Interaction 137 
 

Volume 8   Issue 4 
 

feature subset under consideration meets the user’s specified requirements. Subjects used Andrews and 
Withey’s (1976) seven-point single-item scale (1: terrible, 2: unhappy, 3: mostly dissatisfied, 4: neither 
satisfied nor dissatisfied, 5: mostly satisfied, 6: pleased, 7: delighted) to rate their overall satisfaction level 
with the implementation subset.  

3.4.3 Round 3 
I determined the implementation and the non-implementation subsets using the implicit method described 
in the theory development section for each subject after round 2 based on the responses obtained from 
the subjects in round 1 and round 2. In round 3, each subject provided their user satisfaction response for 
the implementation and non-implementation subsets using the implicit method. Additionally, in this round, 
users rated the features on the hedonic-utilitarian measure (Leclere, Schmitt, & Laurette, 1994). The 
ratings were anchored at 1 = predominantly hedonic and 9 = predominantly utilitarian. I defined the term 
hedonic for the users as “something that is enjoyable and appeals to the senses” and the term utilitarian 
as “something that is useful, practical, functional, something that helps achieve a goal” (Dhar & 
Wertenbroch, 1999). 

I used single-item measures for both hedonic-utilitarian and user satisfaction responses from the user in 
rounds 3 and 2, respectively. Single item measures are short, easy to administer, less time consuming, 
and not monotonous to complete (Gardner, Cummings, Dunham, & Pierce, 1998; Pomeroy, Clark, & 
Philip, 2001). They reduce response biases and are, therefore, relevant for use in large-scale studies 
(Robins, Hendin, & Trzesniewski, 2001).  

3.4.4 Control Procedures 
To mitigate the effect of extraneous variable on the study’s findings such as segmental differences among 
users, I used a homogeneous sample of student subjects for the study. I controlled the sequence effect of 
experimental treatments by a counterbalancing study design using Latin squares (Sheehe & Bross, 1961). 
Every fourth subject in rounds 1 and 3 got the same sequence (see Table 5) for providing their responses 
in rounds 1 and 2. I randomly chose a representative set of 10 feature requests in the survey instrument 
by randomly selecting them from among pending feature requests of Astrid’s users. To avoid variable and 
confounding subject responses due to shifts in structure, content, and format, I re-worded all the 10 
feature requests in a simple and standard style (see Table 2). I controlled the “individual differences” 
among subjects in the sample by using the repeated measure design. I repeated the measurement of 
dependent variable (user satisfaction) in round 2 with individual subjects providing the “user satisfaction” 
responses to their own implementation and non-implantation feature sets determined by using the three 
methods of prioritization (i.e. priority group, binary search tree and 100 point method) in round 1. 

Table 3. Sequencing of Methods in Round 1 

Subject 1 Priority groups Binary Tree 100 Points 
Subject 2 Binary Tree 100 Points Priority group 
Subject 3 100 Points Priority group Binary Tree 

4 Results and Analysis 
Analyzing the data I obtained in round 1 (Table 4) showed that, on the aggregate, users selected six 
features for implementation using the priority groups method. For comparison, Table 4 shows the top six 
high-priority requirements that the users identified using the other two explicit methods. I identified the top 
six requirements that users identified with the implicit method by regressing the users’ overall satisfaction 
with the feature subset that each method identified (see Table 5). I obtained two regression coefficients (I 
describe the method provided in Section 3.4.1) for each user requirement, one for implementation and 
another for non-implementation. I then added the absolute value of the statistically significant regression 
coefficients for implementation and non-implementation of a feature to determine the six features in the 
subset for implementation.  
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Table 4. Results of Astrid Features Selected Based on Data Collected in Round 1 

 Feature 
number 1 2 3 4 5 6 7 8 9 10 

100 
points 

method 

Ranks 
1-6 79 73 33 94 85 70 55 41 77 25 

Ranks 
7-10 49 55 95 34 43 58 73 87 51 103 

Priority 
groups 
method 

High 58 50 83 34 31 46 20 22 62 23 
Medium 33 10 9 63 78 56 16 17 20 33 

Low 37 70 36 31 19 26 73 89 48 72 

Binary 
search 

tree 
method 

Ranks 
1-6 92 86 75 67 81 87 40 47 35 59 

Ranks 
7-10 36 42 53 61 47 41 88 81 93 69 

Consistently, across the three explicit methods, the features selected for implementation and non-
implementation in the software product using this implicit method were the same (Table 5). The sum of the 
absolute value of regression coefficients for the six features numbered as 1, 2, 4, 7, 9, and 10 were higher 
across the three methods and, therefore, qualified for implementation in software. The sum of the absolute 
value of regression coefficients for the four features numbered as 3, 5, 6, and 8 were lower (in fact, 0 as 
none of the regression coefficients were significantly different than 0) across the three methods and, 
therefore, did not qualify for implementation in software. 

Table 5. Results of Astrid Features Selected after Multiple Regression Analysis 

Feature 
number 1 2 3 4 5 6 7 8 9 10 

Binary 
search 

tree 
method 

I 0.016 .980* 0.003 0.009 0.014 0.008 1.010* 0.013 1.450* 1.050* 

NI -.390* -.580* -0.004 -.590* -0.009 0.013 0.027 0.005 -1.270* 0.019 

100 points 
method 

I 0.011 .790* 0.018 0.017 0.034 0.028 1.020* 0.033 1.290* 1.680* 
NI -.480* -.870* 0.075 -.920* -0.021 0.019 0.014 0.007 -.1.160* 0.036 

Priority 
groups 
method 

I 0.022 .850* 0.029 0.046 0.072 0.036 1.200* 0.063 1.290* 1.430* 

NI -.630* -.890* -0.047 -.940* -0.058 0.041 0.065 -0.011 -1.120* 0.170 

* p < 0.05 

Table 6 summarizes the feature numbers (see Table 1 for feature description) that various methods 
selected (indicated with an “x”) for implementation. 

Table 6. Astrid Features Selected Using the Four Different Methods 

Feature number 1 2 3 4 5 6 7 8 9 10 
100 points x x  x x x   x  

Priority group x  x x x x    x  
Binary search tree x x x x x x     

Implicit x x  x  x x  x x 

From Table 6, we can see that the set of six features selected by explicit and implicit methods in the 
implementation set differ. I found only one feature selected to be different in the implementation set when 
comparing the result of any explicit method with any other explicit method. However, in the case of implicit 
method, at least two features selected in the implementation set were different compared with those 
selected using any of the three explicit methods. Thus, these results support Hypothesis 1.  
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Further, from Table 7, we can see that two features 7 and 10 were 1 standard deviation below mean on 
the hedonic-utilitarian scale, indicating these features were predominantly hedonic. As expected, both 
these features were not consistently selected for implementation by the explicit methods with the 
exception of priority groups method. Further, as predicted, both these features were consistently selected 
for implementation by , method (see Table 10).  These findings support my arguments leading up to 
Hypothesis 1 in the theory development section that users find hedonic features hard to justify compared 
with the utilitarian features even though their true preference is for the former. Therefore, in general, 
explicit methods using self-reports will not be as efficacious in selecting hedonic features for 
implementation into the software as they are in selecting utilitarian features (features 1 and 4, see Tables 
6 and 7). By contrast, I found the implicit method to be efficacious in selecting both hedonic and utilitarian 
features (Tables 6 and 7). 

Table 7. Feature Wise Rating on the Hedonic-Utilitarian Scale 

Feature number 1 2 3 4 5 6 7 8 9 10 
Hedonic (1 SD < mean)       0.13   0.08 
Hybrid (>=1 SD and <= 1 SD)  0.45 0.58  0.38 0.59  0.35 0.48  
Utilitarian (1 SD > mean) 0.81   0.78       
SD = standard deviation 

Table 8 shows the results of users’ self-stated overall satisfaction responses in round 2 and 3 with the 
feature set obtained by the four different methods. I analyzed the results using repeated measure ANOVA 
(see Table 9) and found that, while there was no significant difference between the feature sets obtained 
from the three explicit methods, the user satisfaction with the feature set selected by the implicit method 
was significantly higher than the user satisfaction with the feature set obtained from all other methods, 
which supports H2. 

Table 8. Overall User Satisfaction (Self-stated) with Implementation Feature Subsets 

Experimental conditions Mean user satisfaction Standard deviation 
Implicit (1) 5.680 0.534 

Priority groups method (2) 4.913 0.683 
100 points method (3) 4.951 0.582 

Binary Search tree method (4) 4.956 0.665 

 

Table 9. Difference in User Satisfaction (Self-stated) with Implementation Feature Subset 

Method 1 2 3 4 
Implicit (1) 0    

Priority groups method (2) 0.372* 0   
100 points method (3) 0.334* -0.038 0  

Binary Search tree method (4) 0.329* -0.043 -0.005 0 
* p < 0.05 

I derived the overall user satisfaction for implementing the feature set obtained by adding the two 
regression coefficients of features selected for implementation using the implicit and explicit methods from 
Table 5 and present it in Table 10. For the implicit method, I obtained the regression coefficients for 
implementing the feature set (I) by taking the average of the regression coefficients (I) obtained from 
regressing the overall user satisfaction with the feature set using the three explicit methods (see Table 5). 
I analyzed the data in Table 10 using repeated measure ANOVA (see Table 11) and found that the 
implicitly derived overall user satisfaction with the feature set selected by the implicit method was 
significantly higher than the implicitly derived overall user satisfaction with the feature set obtained from all 
other methods. Thus, these results support H2. 
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Table 10. Overall User Satisfaction (Derived) with Implementation Feature Subsets 

Experimental conditions Mean user satisfaction 
Implicit (1) 4.49 

Priority groups method (2) 2.14 
100 points method (3) 2.47 

Binary search tree method (4) 0.98 

 

Table 11. Difference in User Satisfaction (Derived) with Implementation Feature Subset 

Method 1 2 3 4 
Implicit (1) 0    

Priority groups method (2) 2.350*** 0   
100 points method (3) 2.020*** 0.330 0  

Binary search tree method (4) 3.510*** -1.160*** -1.490*** 0 
*** p < 0.001 

5 Discussion 
This study’s findings fully support both H1 and H2. The implicit method of feature selection better elicits 
users’ “true” needs than the explicit methods. Explicit methods using users’ self-reports have limitations. 
Users are hesitant to choose hedonic features at a rational level although they may prefer to acquire them. 
In contrast, utilitarian features are easier to justify than hedonic features. Users like others to see them as 
addressing their practical functional needs rather than indulging in pleasure. This behavior became clear 
when the explicit methods using user self-reports selected both the predominantly utilitarian features with 
greater efficacy than they did in selecting the two predominantly hedonic software features (see Tables 6 
and 7). Yet, hedonic features (7, 10) had a higher positive impact on user satisfaction than utilitarian 
features (1, 4) (see Table 5). 

In contrast, the implicit method accurately selected both hedonic and utilitarian features for implementation 
(see Tables 6 and 7). The implicit method’s ability to find users’ genuine needs is not surprising 
considering that implicit methods do not embarrass users or create guilt by exposing their preference for 
hedonic features. Further, the implicit method does not overlook their needs for utilitarian features. While 
hedonic features represent Herzberg, Mausner, and Snyderman’s (1967) motivators, utilitarian features 
represent Herzberg et al.’s (1967) hygiene factors. Hedonic features are satisfiers (i.e., implementing them 
leads to satisfaction but not implementing them does not cause dissatisfaction) and utilitarian features are 
dissatisfiers (i.e., implementing them does not cause user satisfaction but not implementing them causes 
dissatisfaction) (Zhang & von Dran, 2002). By identifying two regression coefficients representing user 
satisfaction with implementing a feature and user dissatisfaction with not implementing a feature and 
summing up their absolute values for determining the relative importance of features enables the implicit 
method to identify salient hedonic (7, 10) and utilitarian features (1,4) (see Table 5). Further, this approach 
also enables the implicit method to identify salient hybrid features (2, 9) (Table 5).  

Hybrid features are neither satisfiers nor dissatisfiers but, due to their hybrid nature, cause user 
satisfaction on implementation and user dissatisfaction on non-implementation. These feature 
characteristics are in line with the theory of attractive quality (Kano, Seraku, Takahashi, & Tsuji, 1984)—an 
extension of Hezberg’s (Herzberg et al., 1967) motivation-hygiene perspective—that identifies three types 
of features: must-be, one-dimensional and attractive instead of just satisfiers (motivators) and dissatisfiers 
(hygiene). From the perspective of the theory of attractive quality, while must-be features are dissatisfiers, 
attractive features are satisfiers and one-dimensional features are both. 

Must-be features are prerequisite features: users assume the product will provide them. Thus, must-be 
features lead to user dissatisfaction on non-implementation but no satisfaction on implementation. 
Intuitively, it makes sense for users in the study to classify “choosing date from a calendar” in the must-
be/utilitarian/dissatisfier category since the feature is so basic. Further, the feature is commonly available 
across applications, and users do not expect to enter dates manually. But, at the time of the study, Astrid 



www.manaraa.com

Transactions on Human-Computer Interaction 141 
 

Volume 8   Issue 4 
 

did not provide this core feature. Thus, although users would likely be dissatisfied if software does not 
meet this must-be requirement, they do not think it is a big deal. 

Attractive features are those that surprise users pleasantly and create delight. Implementing attractive 
features in a product enhances user satisfaction but causes no dissatisfaction on non-implementation. At 
the time of the study, the “Geolocation reminders” feature would have excited the users enough for them 
to classify it in the predominantly hedonic (attractive/ satisfier) category. Yet, while the unexpected value 
that implementing this feature in the software product provides enhances user satisfaction, it is not likely to 
cause user dissatisfaction on non-implementation. Implementing one-dimensional features causes 
satisfaction on implementation and dissatisfaction on non-implementation. Classifying “color tasks based 
on priority” in the hybrid/one-dimensional category has face value. Users would find this feature to be 
helpful in using Astrid by visually (appeal to the senses) providing them with help to identify and manage 
priority tasks (utility).  

Thus, from the theory of attractive quality’s perspective, one can consider predominantly hedonic features 
as attractive features, predominantly utilitarian features as must-be features, and hybrid features as one-
dimensional features. The results of the study empirically confirm this association (see Tables 5 and 7). 
The hedonic features (7, 10) identified by the implicit method impacted user satisfaction positively on 
implementation but did not impact user satisfaction on non-implementation. The utilitarian features (1, 4) 
impacted user satisfaction negatively on non-implementation but had no impact on user satisfaction on 
implementation. The hybrid features (2, 9) impacted user satisfaction negatively on non-implementation 
and impacted user satisfaction positively on implementation. Thus, the findings (summarized in Tables 12 
and 13) agree with those that one can expect from the two factor theory (Herzberg et al., 1967) and the 
three factor theory (Kano et al., 1984).   

Further, the implicit method could also accurately identify features 3, 5, 6, 8 that are not salient from users’ 
perspective. These features neither impacted user satisfaction significantly on implementation nor caused 
user dissatisfaction on non-implementation. Thus, this study’s findings empirically support the theory and 
the approach for implicitly selecting software features proposed in the study and its arguments that the 
implicit method can be useful in identifying software users’ “true” needs.  

Table 12. Impact of Feature Implementation on User Satisfaction 

Feature Types 
Impacts on user satisfaction 

Positive No impact Negative 

Hedonic features (motivators / satisfiers / excitement) √   

Hybrid features (performance) √   

Utilitarian features (hygiene / dissatisfiers / excitement)  √  

Indifferent  √  

 

Table 13. Impact of Feature Non-Implementation on User Satisfaction 

Feature types 
Impacts on user satisfaction 

Positive No impact Negative 

Hedonic features (motivators / satisfiers / excitement)  √  

Hybrid features (performance)   √ 

Utilitarian features (hygiene / dissatisfiers / excitement)   √ 

Indifferent  √  

6 Contribution 
Research have long suggested involving users as active contributors in the product-development process 
rather than as passive participants (Gardiner & Rothwell, 1985; Leonard-Barton, 1995; Rothwell, 1976; 
von Hippel, 1988; Witell, Lofgren, & Gustaffsson, 2011). Collectively, users constitute a source of much 
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product innovation (Vonn Hippel, Ogawa, & de Jong, 2012). When one views users merely as recipients of 
innovation, firms do not have access to user knowledge and experience developed through product use 
(Sawhney, Verona, & Prandelli, 2005).  

Therefore, to actively engage users, organizations have evolved various mechanisms. Of these 
mechanisms, many organizations have increasingly begun to use websites for capturing and prioritizing 
user requirements. The websites include both forums and collaborative tools and allow large numbers of 
users to participate in the requirements-gathering and analysis process. The success of websites and 
collaborative tools that have been used to gather inputs from users demonstrates that, given the 
opportunity, users too are willing to take the time to contribute feedback and ideas (Laurent & Cleland-
Huang, 2009). 

However, whatever the mechanism used, by actively engaging users, one often elicits more new feature 
requests than one needs to build into the system. The large number of feature requests creates a dilemma 
for software-development organizations. While, on the one hand, excluding a high-value feature may 
mean losing users to a competing product, on the other hand, including an unneeded requirement creates 
wasted development effort, delays the time the product takes to reach the market, and increases the 
product’s complexity, maintenance, and operational costs. Research has suggested that a product’s 
evolution should be innovative in the users’ frame of mind, not the developers’ (Fellows & Hooks, 1998). 
Implementing new product features that do not resonate with the users may result in product investments 
that are counterproductive. 

Perhaps for this reason, requirements prioritization methods have traditionally used user self-reports to 
identify features to implement into software. However, this study’s findings questions whether we can take 
user responses to new product features at face value. Previous studies have suggested that self-reported 
user preferences are likely to be biased. However, to the best of my knowledge, no study has investigated 
this phenomenon for software products. Further, no study in the software or non-software product domains 
has investigated this phenomenon theoretically and empirically validated the proposed theory. In this 
study, I found evidence to suggest that we cannot take the user self-report at face value. While users’ self-
reports can efficiently identify utilitarian features, they do have a problem with correctly identifying hedonic 
features, which highlights a critical issue in software-feature selection.  

In a recent meta-analysis of technology adoption model (TAM) studies, Gerow et al. (2013) note that both 
utilitarian and hedonic features are equally important to the users of even utilitarian products. As such, 
software-development organizations need to accurately identify salient utilitarian and hedonic features to 
implement in their product. By adapting the well-known penalty contrast reward analysis (PRCA) method 
to select new features, this study provides an implicit method for capturing hedonic and utilitarian features 
that users find important. I tested this method with actual users of a software product, and it outperformed 
promising existing methods from requirements engineering domain that prioritize requirements based on 
users’ self-reports.  

The method developed in this study could not only identify salient predominantly hedonic and 
predominantly utilitarian features but also salient hybrid features that can impact user satisfaction. Further, 
the study also accurately identified features that users do not care about. These findings are useful for 
practitioners because they will help in managing user satisfaction and maximizing return by suggesting 
which features that users value to implement and eliminating those they do not. Further, the findings 
provide practitioners with information on prioritizing features under conditions of resource constraint. 
Depending on product goals and the resources available, software product managers can make decisions 
to include or exclude a new feature for implementation into the product.  

For example, if one seeks to first preclude dissatisfaction, then one should prioritize implementing 
requirements 9, 4, 2, and 1 in that order of priority depending on the availability of resources. If one seeks 
to enhance user satisfaction, then one should focus on implementing features 9, 10, 7, 2 in that order of 
priority. Further, if one seeks to enhance a product’s hedonic value by making it more attractive and 
enjoyable to use, then one should focus on implementing features 7 and 10. If one seeks to enhance a 
product’s utilitarian value by improving user productivity and helping users meet their functional goals, 
then one should focus on implementing features 1 and 4.  
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